

Presenting and Lecturing in Engineering

Day 2

Siara Isaac, Ph.D Joelyn de Lima Ph.D.

Teaching Support Centre cape.epfl.ch

★•

EPFL

Welcome to Day 2!

- Pick a couple of slides that strike you.
- Pair up with someone who has a different slide
- Talk to each other about that slide.

Active Learning: Why and How

Joelyn de Lima Ph.D.

(some slides courtesy Siara Isaac)
Teaching Support Centre
cape.epfl.ch

4th March 2022

3

EPFL

Learning Objectives

At the end of this presentation, you should be able to:

- Explain the affordances of active learning.
- Compare various strategies to increase active learning in your classroom
- Facilitate interactivity using questions.

ACTIVE LEARNING: WHY AND HOW

Jigsaw: Freeman et al. 2014 PNAS article 🗷

- You will start in groups with other people who have the same alphabet as you.
- Read the article and answer the questions assigned to your group.
 - A: intro
 - B: results
 - C + D: discussion

5

EPFL

Jigsaw: Freeman et al. 2014 PNAS article 🔎

- Now form groups with people who have the same colour as you.
- Share your answers from your first discussion groups.
- How should university teachers respond to this study?

TIVE LEARNING: WHY AND HOW

Summarise

- What did you learn from this discussion?
- List one action that you will take based on what you learnt.

ACTIVE LEARNING: WHY AN

7

EPFL

Active Learning

Students are engaged in the learning process.

Many strategies:

- Think-pair-share
- Jigsaw
- Discussions
- Brainstorming

TIVE LEARNING: WHY AND HOW

Active Learning: Some considerations

- Inclusivity:
 - Students with speech impediments
 - Second language
 - Social anxiety

CTIVE LEARNING: WHY AND

9

EPFL

Active Learning: The pause

- After every chunk of instruction break for 2 mins.
- Allow students to summarise, make notes.
- Promote encoding

IVE LEARNING: WHY AND HOV

Active Learning: Quescussion

A question-based discussion:

- All interventions must be questions.
- Only one question at a time.

ACTIVE LEARNING: WHY AND

Prof. Paul Bidwell, University of Saskatchewan, Canada

11

EPFL

Active Learning: Quescussion

What if there were eight colours in the rainbow?

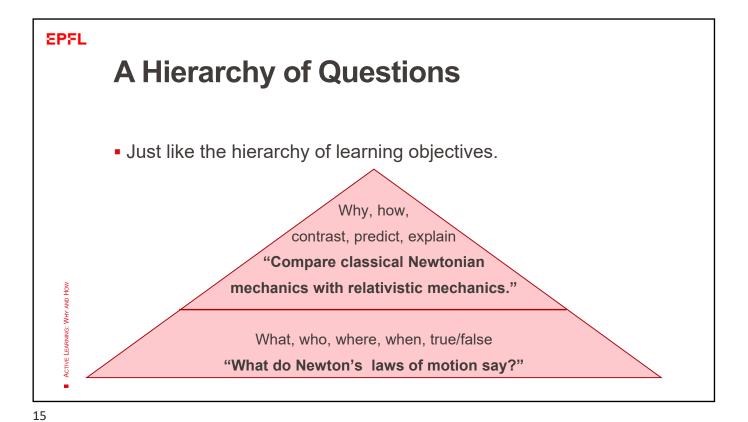
WE LEABNING: WHY AND HOW

Active Learning: Quescussion

- Choose 2 3 question.
- Respond to misconceptions.

ACTIVE LEARNING: WHY AND

Prof. Paul Bidwell, University of Saskatchewan, Canada


13

EPFL

Active Learning: Asking questions

- Who asks?
- Who answers?
- What type of question?

TIVE LEARNING: WHY AND HOW

Active Learning: Minute paper

 At the end of class, students write their responses to a specific question.

TIVE LEABNING: WHY AND HOW

Active Learning: Minute paper

- Use your learning objective for today's mini lesson
- Construct one precise question to test that learning objective.

*

17

EPFL

Methodology for interactive strategies

- Prepare questions appropriate for the learning objective and the teaching strategy
- Foster a climate that encourages participation
- Ask ONE clear, concise question at a time
- Wait

TIVE LEARNING: WHY AND HOW

Why wait?

19

EPFL

Still waiting?

- Rephrase your question.
- Do they have all the information?
- Think-pair-share
- Is the classroom environment conducive to their participation?

ACTIVE LEARNING: WHY AND HOW

Encouraging responses

- Be positive
- Be specific, reiterate
- Build on the response

TIVE LEARNING: WHY AND

21

EPFL

Encouraging responses

- Be positive
- Be specific, reiterate
- Build on the response
- Ask probing questions:
 - "How did you arrive at that answer?"
 - Clarify: "Could you rephrase that statement?"
 - Increase awareness: "What are you assuming?"
- Invite others to comment on the response.
- Extract important points and clear up confusion.

Active Learning: Buzz groups

- Break into 4 teams
- By team, respond to the following question
- On the right side of the room:
 How to encourage « timid » students to participate more?
- Left side: How to contain a student who always has a response?

23

EPFL

Active Learning: Rally Robin

- One question at a time
- Each group takes turns to give a suggestion

ACTIVE LEARNING: WHY AND HOW

Student participation is not a spontaneous phenomena...

- Structure participation!
- Explicitly share your expectations
- Formulate learning objectives
- Chose an appropriate strategy
- Prepare clear instructions (time, etc.)
- Consider how to provide feedback

25

How and when to explain

Siara Isaac Ph.D.

Teaching Support Centre cape.epfl.ch March 2022

"Explaining is often what we think of as the primary activity of teaching. Given its visibility, explaining is often overused and frequently overvalued"

good teaching is not good telling

Notes on explaining

Ask yourself

- would a question that gets students thinking for themselves be more effective?
- am I making assumptions that this student needs the additional *help* of an explanation rather using a question to guide them to figuring it out themselves?

four key elements to keep in mind when preparing an explanation

- Starting where your audience is
- Keeping it short
- Modeling ALL your thinking
- Using the LOAFS structure

29

Extract from Chapter 6

Case study 6.1.C

VE LEABNING: WHY AND HO

Classroom Management: Why and How

Siara Isaac Ph.D.

Teaching Support Centre cape.epfl.ch

4th March 2022

31

Learning to manage your relationship with a class is important for STEM teaching

- relationships with empathy and warmth showed a moderate to strong correlation with achievement in mathematics (r=.36; Cornelius-White 2007).
- moderate impacts on cognitive learning (r=.17; Wit et al. 2004)
- affect student attendance and absenteeism (Rocca, 2004)
- classroom incivilities (Boice, 1996)

32

Class management is a skill that develops and improves over time

Novice teachers who had followed a training programme felt more confident in their ability to develop a positive class environment when compared to those who relied only on their own experiences (Darling-Hammond, 2002).

Lack of confidence leads novice teachers to correct rather than to prevent incivilities (Reupert, 2010)

Linda Darling-Hammond's study in nearly 3000 pre-service New York State teachers: Darling-Hammond, L., Chung, R., and Frelow, F. (2002). Variation in Teacher Preparation: How Well do Different Pathways prepare Teachers to Teach?, Journal of Teacher Education 53(4): 286-302

Reupert, A., and Woodcock, S. (2010). Success and near Misses: Pre-Service Teachers' Use, Confidence and Success in Various Classroom Management Strategies eaching and Teacher Education 26(6): 1261-68

33

EPFL

All teachers experience some form of incivility, but new faculty and underrepresented teachers are more likely to experience hostile behavior.

When observing classes for new faculty, class incivilities "emerged as a major factor, frequently dominating classes, often **making** or **breaking novice** teachers" (Boice, 1996, 454).

When surveying 397 Geography instructors, results showed that **hostile** behaviors were rare but significantly directed towards women, ethnic minorities and foreign instructors (Alberts, et al, 2010).

Bob Boice's landmark study: Classroom incivilities (1996). *Research in Higher Education* 37(4): 453-486.

Heike C. Alberts , Helen D. Hazen & Rebecca B. Theobald (2010) Classroom Incivilities: The Challenge of Interactions between College Students and Instructors in the US, Journal of Geography in Higher Education, 34:3, 439-462.

Teachers lead the change

Until a **teacher** becomes **aware** of a disruptive behaviour in the class, one that students may have already seen we find "evidence of understanding ... translated into reliably **changed** practices in classrooms" (Boice, 1996, 465).

Students see themselves as being on the **same side** as the teacher, but at the same time they **expect** the teacher to manage the situation.

Tormey, R., Isaac, S., Hardebolle, C., & Le Duc, I. (in press). Chapter 7: Managing relations with a class in Facilitating Experiential Learning in Higher Education: Teaching and Supervising in Labs, Fieldwork, Studios and Projects. Routledge.

Bob Boice's landmark study: Classroom incivilities (1996). Research in Higher Education 37(4): 453-486.

35

35

EPFL Warmth **Authority Safety** Disdain Assertion/ Power Affiliation l Belonging Awe Affection Sadness Anxiety Trust Attachment/Safety Tormey, R. (2021). Rethinking Student-Teacher Relationships in Higher Education: A Multidimensional Approach. Higher Education. https://doi.org/10.1007/s10734 021-0711-w 36

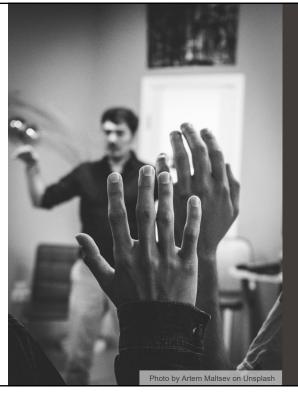

ACTIVE LEARNING: WHY AND H

Table X.1 activity from « THEORIZING THE EMOTIONAL QUALITY OF TEACHING AND LEARNING RELATIONSHIPS IN STEM FACULTY DEVELOPMENT » TORMEY, LE DUC & ISAAC (2022)

- Affiliation is characterized by emotions like affection, warmth, liking, belonging, or love and provides a foundation for social living. This is increasing important given the importance of cooperation for active and interactive learning in STEM higher education (Johnson et al., 2014; Menekse, 2013; Freeman et al., 2014; Prince 2004).
- Attachment reflects feelings of security and safety. A large body of evidence shows that feelings of fear or anxiety hinder student learning in STEM. This is distinct from affiliation: ie. a teacher who communicates that they like students can appear warm (high affiliation) but as unreliable (low attachment).
- Assertion arises from a sociological literature on power and status in relationships (situations where power differentials are taken for granted).
 While there are occasions when teachers and students feel anger or contempt; a sense of awe, or more modestly being impressed, to a teacher's desirable cultural capital.

37

EPFL

Teaching without telling

Asking questions

Tormey & Isaac. (2022). Facilitating Experiential Learning in Higher Education Teaching and Supervising in Labs, Fieldwork, Studios and Projects. Routledge. https://doi.org/10.4324/9781003107606

@Siara - you wanted to replace these with the duck activity Joelyn de Lima, 2024-02-06T20:15:54.878 JdL0

What questions do your students ask?

When a student asks you a question, it shows some cognitive effort

But can also result in <u>you</u> doing the next cognitive steps --> never work harder than your students

39

39

EPFL

There will (hopefully) be (a lot of) questions

Context: You expect students to actively engage with your class – and to ask a lot of questions!

This can generate anxiety and frustration.

Goal: Create a climate that encourages students to feel it is ok to ask questions, while at the same time not immediately answering the question for them.

Micro-skill: Welcome the question (do not answer - yet).

Task: Welcome the question (about ducks). Don't answer it!

40

Understand where the question comes from

Context: The Curse of Knowledge... Experts (you) often don't remember what novices (them) don't understand.

Goal: Get the student to think, understand their question better, give yourself time to figure out a response.

Micro-skill: Ask for more information.

Task: Welcome the question (about ducks). Don't answer it!

Respond with a question that gets the student to articulate what they do and don't understand.

·

41

41

EPFL

Let the students take the cognitive load

Context: We learn best when cognitively engaged.

Goal: Get the students to learn better by having **them do the thinking** (instead of you telling them).

Micro-skill: Ask a question/give a thinking task.

Task: Welcome the question (about ducks). Don't answer it!

Respond with a question that gets the student to articulate what they do and don't understand.

Ask a question/give a thinking task.

When responding to student questions:

- The response is welcoming (i.e. it encourages the student to keep asking questions)
- There is a genuine, open-ended question for the student (not rhetorical)
- The question points the student in the right direction while still requiring them to think for themselves
- The question(s) help(s) the student with more than just this question (i.e. developing process/skills for future tasks)

.

43

EPFL

Let's practice it together!

Does energy always have units of kJ?

-

Let's practice it together!

Does energy always have units of kJ?

The **response is welcoming** (i.e. it encourages the student to keep asking questions)

There is a **genuine**, **open-ended question** for the student (not rhetorical)

The question points the student in the right direction while still **requiring them to think for themselves**

The question(s) **help(s) the student with more than just this question** (i.e. developing process/skills for future tasks)

45

EPFL

Let's practice it together!

• Can you please explain AGAIN how some wavelengths go through walls and some can't?

Let's practice it together!

• Can you please explain AGAIN how some wavelengths go through walls and some can't?

The **response is welcoming** (i.e. it encourages the student to keep asking questions)

There is a **genuine**, **open-ended question** for the student (not rhetorical)

The question points the student in the right direction while still **requiring them to think for themselves**

The question(s) **help(s) the student with more than just this question** (i.e. developing process/skills for future tasks)

47

EPFL

Let's practice some more!

- Stand up!
- Role-play:
 - Person 1 (student): ask a question about your project
 - Person 2 (teacher): reply with a question
 - Person 1 (student): how did the teacher do?
 - Switch

 Turn to someone else and repeat

Let's practice some more!

- Stand up!
- Role-play:
 - Person 1 (student): ask a question about your project
 - Person 2 (teacher): reply with a question
 - Person 1 (student): how did the teacher do?
 - Switch

 Turn to someone else and repeat

The **response** is **welcoming** (i.e. it encourages the student to keep asking questions)

There is a **genuine**, **open-ended question** for the student (not rhetorical)

The question points the student in the right direction while still **requiring them to think for themselves**

The question(s) **help(s) the student with more than just this question** (i.e. developing process/skills for future tasks)

49

EPFL Homework

- 1. Daily reflection -> submit it before you go home
- 2. Preparation Assignment on Moodle
- 3. Prepare your mini lesson for Day 3
 - Choose a cutting edge procedure or experimental technique that will pose a cognitive challenge for your audience. Focus on modeling disciplinary thinking
 - Use the Day 3 lesson planning matrix
 - 10 minutes
 - Include active learning

